
Subject: Computer Science Year group: 11

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer
2

Content

Declarative
Knowledge
–

‘Know
What’

 Programming

Arrays, Procedures and
functions, Records and
files

 Logic and languages

Logic diagrams, Truth
tables, Defensive design,
Errors and testing,
Translators and facilities of
languages,

Data representation

Units, Numbers, Characters,
Images, Sound, Compression

Exam Prep

Revision techniques, past
papers for practise and
confident building

 Exams Prep Exam

Skills

Procedural
Knowledge
–
‘Know How’

• write pseudocode
solutions to simple
problems involving
sequence,
selection and
iteration

• use nested
selection and
iteration
statements

• use Boolean
operations NOT,
AND and OR
within conditions
for iterative and
selection
structures

• use basic string
manipulation
functions in

• Recognise standard
symbols used to
represent NOT, AND
OR, NAND, NOR and
XOR logic gates

• Draw truth tables for
the above logic gates

• Describe some simple
validation checks that
can be applied to data

• Select test data that
covers normal (typical),
boundary (extreme)
and erroneous data

• Complete a trace table
to trace through a
simple algorithm

• Give examples of high-
level and low-level
languages

• Give advantages of
high-level languages

• Explain why all data needs
to be converted to binary
before the computer can
process it

• Convert positive denary
whole numbers (0-255) into
8-bit binary numbers and
vice versa

• Convert between binary
and hexadecimal

• Explain the use of binary
codes to represent
characters

• Understand the term
‘character set’

• Explain the relationship
between the number of bits
per character and the
number of characters which
can be represented

• List some privacy
issues in relation to
a given scenario

• Choose from a
given list, which Act
is relevant to a
particular scenario

• List one attribute
and advantage of
open source
software and
proprietary software

• Describe some
ethical, legal,
cultural and/or
environmental
issues in relation to
a given scenario

• Describe some
privacy issues in

• identify and use
variable types
integer, real,
Boolean,
character and
string

• identify variables
and constants in
a program

• use meaningful
identifier names
and know why it
is important to
use them

• use arithmetic
operations
including mod
and div

• use Boolean
operators in
pseudocode
solutions

• show the results
of basic string

pseudocode
solutions

• give examples of
data structures:
arrays and records

• use one-
dimensional arrays
in the design of
solutions to simple
problems

• write simple
functions and
procedures using
parameters

• read from and
write to a text file

• explain what is
meant by a data
structure and why
these are used

• use two-
dimensional arrays
in the design of
solutions to simple
problems

• explain why it is
good practice to
use local variables

over low-level
languages

• Explain the differences
between a compiler,
interpreter and
assembler

• Recognise a logic gate
from its truth table

• Draw a logic circuit to
solve a given problem

• Detect and correct
errors in simple
algorithms

• Use a trace table to
find errors or
determine the purpose
of an algorithm

• Be able to justify the
choice of test data

• Give examples and
reasons of when it
might be appropriate
to use a low-level
language

• Give examples of when
it would be
appropriate to use a
compiler and
interpreter

• Draw a logic circuit to
implement a

• given written logic
statement

• Write more complex
authentication
routines

• Write robust programs
that apply checks to

• Explain the representation
of an image as a series of
pixels represented in binary

• Explain how sound can be
sampled and stored in
digital form

• Perform a binary shift

• Explain the need for
compression

• Add two binary integers
and explain overflow errors

• Explain why hexadecimal
numbers are used to
represent binary data

• Discuss the effect of colour
depth and resolution on the
size of an image file

• Explain how sampling
intervals and other
considerations affect the
size of a sound file

• Explain the effects of a
binary shift

• Explain the purpose of a
check digit

• Explain the effect of
different types of
compression

• Explain how instructions are
coded as bit patterns

relation to a given
scenario

• Describe the
differences between
open source and
proprietary software
and give

advantages of each:

• List the clauses of
the Data Protection
Act and Computer
Misuse Act and give
examples of
situations in which
they are relevant

• Evaluate the impact
of and issues
related to the use of
computers in society

•

manipulation
functions

• use random
number
generation

• follow through
pseudocode
solutions to
simple problems
involving
sequence,
selection and
iteration

• explain why
functions and
procedures are
used in creating
solutions to
problems

• use simple
functions and
procedures that
return values to
the calling
program

data entered by the
user

• Explain how sampling
intervals affect quality of
the playback of a sound file

• Explain how the computer
distinguishes between
instructions and data

• Calculate a check digit

Vocabulary Subroutine, procedure,
function, parameter,
return value, built-in
function, scope, global
variable, local variable.

Binary, logic gate, NOT,
AND, OR, NAND, NOR, XOR,
truth table, logic circuit,
logic statement
compiler, interpreter,
assembler, high level
language, low level
language, assembly
language, source code,
object code, bytecode,
machine code, machine
independence.
validation, verification,
authentication, syntax
errors, logic errors, runtime
errors, trace table, dry run,
valid data, invalid data,
boundary data.

Bit, nibble, byte, kilobyte,
megabyte, gigabyte, terabyte,
denary, overflow, hexadecimal,
character set, ASCII, Unicode,
character set, check digit, shift,
metadata, pixel, colour depth,
resolution, sound sampling,
playback, lossy, lossless,
compression.

Assessment

End of topic
Assessments,
Presenting your
understanding about a
topic to the class, Q &
A, Self-evaluation of
topics

End of topic Assessments,
Presenting your
understanding about a topic
to the class, Q & A, Self-
evaluation of topics

End of topic Assessments,

Presenting your understanding

about a topic to the class, Q & A,

Self-evaluation of topics

End of topic Assessments,

Presenting your

understanding about a

topic to the class, Q & A,

Self-evaluation of topics

End of topic
Assessments,
Presenting your
understanding about a
topic to the class, Q & A,
Self-evaluation of topics

Exams Written Paper 1: Computer Systems
This component will introduce learners to the Central Processing Unit (CPU), computer memory and storage, wired and wireless networks, network topologies, system
security and system software.

It is expected that learners will become familiar with the impact of Computer Science in a global context through the study of the ethical, legal, cultural and
environmental concerns associated with Computer Science.

Written Paper 2: Computational thinking, algorithms and Programming
This component incorporates and builds on the knowledge and understanding gained in Component 01, encouraging learners to apply this knowledge and
understanding using computational thinking.

Learners will be introduced to algorithms and programming, learning about programming techniques, how to produce robust programs, computational logic, translators
and facilities of computing languages and data representation.

